PROPAGATION OF BIOGEOCHEMICAL SIGNALS FROM ARCTIC SOILS TO STREAMS

Tamara Harms
University of Alaska Fairbanks
NITROGEN RELEASE FROM WARMED TUNDRA

INORGANIC NITROGEN FLUX INCREASING IN KUPARUK RIVER

Kendrick et al. 2019
PROPAGATION OF CLIMATE WARMING SIGNALS
PROPAGATION OF CLIMATE WARMING SIGNALS

- Transport
PROPAGATION OF CLIMATE WARMING SIGNALS

- Transport
- Reaction
Upper Kuparuk River Basin, Alaska

WATER TRACKS
• 0.013-0.089 km²
• Up to 1/3 catchment area (McNamara et al. 1997)
WATER TRACKS CONVEY THE MAJORITY OF STORMFLOW

Cumulative Rainfall: 185.8 mm

Rushlow & Godsey 2017
NUTRIENT SPIRALING
NUTRIENT SPIRALING

Wagener et al. 1998
NUTRIENT UPTAKE
- NH₄⁺ or PO₄³⁻ pulse addition
NUTRIENT UPTAKE

- NH$_4^+$ or PO$_4^{3-}$ pulse addition
- Mass balance
NUTRIENT UPTAKE

- NH$_4^+$ or PO$_4^{3-}$ pulse addition
- Mass balance
- First-order kinetics
NUTRIENT UPTAKE

- NH$_4^+$ or PO$_4^{3-}$ pulse addition
- Mass balance
- First-order kinetics
- Duration: 2-8 h
HILLSLOPES PROPAGATE NH$_4^+$

Harms, Cook, Wlostowski, Godsey, Gooseff, in press, *Ecosystems*
HILLSLOPES ATTENUATE PO$_4^{3-}$

Harms, Cook, Wlostowski, Godsey, Gooseff, in press, Ecosystems
DRIVERS OF NUTRIENT RETENTION

Harms, Cook, Wlostowski, Godsey, Gooseff, in press, Ecosystems
DRIVERS OF NUTRIENT RETENTION

Harms, Cook, Wlostowski, Godsey, Gooseff, in press, *Ecosystems*

Figure a

NH$_4^+$ uptake (µg N m$^{-2}$ min$^{-1}$) vs. water temperature (°C)

- $r = 0.42$ (0.06, 0.76)

Figure b

PO$_4^{3-}$ uptake (µg P m$^{-2}$ min$^{-1}$) vs. Péclet number

- $r = 0.71$ (0.34, 0.93)

Figure c

PO$_4^{3-}$ uptake (µg P m$^{-2}$ min$^{-1}$) vs. Thaw depth (cm)

- $r = -0.78$ (-0.99, -0.12)

Year: 2012, 2013, 2014

Site: WT1, WT5
WATER TRACKS TRANSPORT NH$_4^+$
AND RETAIN PO$_4^{3-}$
Transient storage dominated downslope flux at lower flows
Transient storage dominated downslope flux at lower flows

- Transient storage unrelated to thaw depth or nutrient uptake
Transient storage dominated downslope flux at lower flows

- Transient storage unrelated to thaw depth or nutrient uptake

Phosphorus retention weakly related to thaw depth
Transient storage dominated downslope flux at lower flows

- Transient storage unrelated to thaw depth or nutrient uptake

Phosphorus retention weakly related to thaw depth

- Greater abiotic and/or biotic retention capacity in upper, organic soil horizons
Transient storage dominated downslope flux at lower flows

- Transient storage unrelated to thaw depth or nutrient uptake

Phosphorus retention weakly related to thaw depth

- Greater abiotic and/or biotic retention capacity in upper, organic soil horizons
- Deepening flows through thawed mineral soils might bypass zones of active retention
N release
N/P-limited

N release
N/P-limited

N release

P-limited
N/P-limited

N release

P-limited
N/P-limited

N release

P-limited

P-limited

P-limited
UNFROZEN SOILS IN WINTER

Top: Snow Depth
- WT inferred snow depth
- HS inferred snow depth

Bottom: Ground Thermal Conditions
- Missing data
- WT thawed, HS partially frozen
- WT thawed, HS frozen
- WT partially frozen, HS frozen
- Both thawed
- Both partially frozen
- Both frozen
- HS thawed, WT partially frozen
- HS thawed, WT frozen
- HS partially frozen, WT frozen

Rushlow, Godsey, & Harms, in prep
FUTURE PROSPECTS

• Integration among arctic ecosystems
FUTURE PROSPECTS

- Integration among arctic ecosystems
 - Regional-scale phenomena
FUTURE PROSPECTS

- Integration among arctic ecosystems
 - Regional-scale phenomena
 - Connectivity
FUTURE PROSPECTS

- Integration among arctic ecosystems
 - Regional-scale phenomena
 - Connectivity
 - Formalize collaborations among Arctic study sites
FUTURE PROSPECTS

- Integration among arctic ecosystems
 - Regional-scale phenomena
 - Connectivity
 - Formalize collaborations among Arctic study sites
- Winter processes
FUTURE PROSPECTS

• Integration among arctic ecosystems
 ▶ Regional-scale phenomena
 ▶ Connectivity
 ▶ Formalize collaborations among Arctic study sites
• Winter processes
 ▶ Establish baselines & track change
FUTURE PROSPECTS

- Integration among arctic ecosystems
 - Regional-scale phenomena
 - Connectivity
 - Formalize collaborations among Arctic study sites
- Winter processes
 - Establish baselines & track change
 - Logistics challenges